
SAFECode Software Architecture Manual

John Criswell

July 25, 2019

1 Introduction

Welcome to the SAFECode Software Architecture Manual! The purpose of this
manual is to give the reader an overview of how the SAFECode transform passes
are organized, the reason for this organization, and an introduction to the source
code layout.

2 SAFECode Compiler Structure

2.1 SAFECode Compiler Design Principles

SAFECode is implemented as a set of LLVM analysis and transform passes.
One important question in designing SAFECode was how to split up the work
of transforms between different LLVM passes.

The following principles guide the design of SAFECode’s software architecture.
They are based on standard good practice in compiler design as well as obser-
vations made while maintaining and improving SAFECode:

1. Separation of Concerns:

SAFECode passes should be as simple as possible. Previous versions of
SAFECode had passes that performed both run-time check instrumenta-
tion and optimization of the run-time checks. This created a situation in
which code was complex and passes had a dozen different options to turn
features on and off.

By separating concerns, each pass is smaller, easier to read, and easier
to understand. It also makes the software more flexible; features can be
enabled and disabled by simply choosing to run or not run a particular
transform pass. This is useful for measuring the impact of optimizations
as well as allowing tools like bugpoint to better isolate bugs.

1



SAFECode Software Architecture 2

2. Enable Integration into LLVM and Clang:

At some point in the future, we (or others) may want to integrate parts of
SAFECode into LLVM and/or Clang. Doing so would have many benefits,
including wide-scale adoption, better integration with the compiler tool-
chain, and additional developers.

To make integration into other LLVM projects easier, SAFECode attempts
to adhere to the next principle.

3. Make Whole-Program Analysis an Optimization:

A simple approach to implementing SAFECode is to first run whole-
program analysis passes to infer properties about the program and then
to have transforms use this information to instrument the code with run-
time checks when necessary. The problem is that LLVM performs whole-
program analysis in the linker; the linker, in turn, runs LLVM transform
passes more or less unconditionally.

Therefore, we want SAFECode instrumentation passes to require no whole-
program analysis at all and write the more sophisticated features into opti-
mizations on run-time checks. The front-end (e.g., Clang) can then decide
whether to instrument a program and run a simple transform pass. The
linker can then check to see if the program contains any run-time checks
and, if so, improve or optimize those checks using whole-program analysis
techniques.

2.2 Compilation Phases

SAFECode’s various transform passes can be, roughly speaking, grouped into
several phases as follows:

1. Check Insertion Phase:

In this phase, SAFECode examines the code for operations which may
cause a memory safety error and inserts run-time checks as needed. These
run-time checks are simple and do not assume that everything about the
program is known. They are designed so that they can be used by a
front-end (like Clang) to instrument programs.

2. Check Optimization Phase:

During this phase, SAFECode attempts to optimize the run-time checks it
inserted in the Check Insertion Phase. Some of these optimizations do not
require whole program analysis and could be integrated into a front-end
compiler; others do require whole-program analysis and would normally
be implemented in an optimizing linker.

A key feature of these optimization passes is that they work on both
instrumented and uninstrumented code. If there are no run-time checks
to optimize, they should do nothing.



SAFECode Software Architecture 3

An important optimization that is executed during this phase is Auto-
matic Pool Allocation. Automatic Pool Allocation will change all heap
allocations to allocate memory out of distinct pools, and it will also mod-
ify run-time checks to include pool handles; the run-time checks can use
these pool handles to speed up their checks or to make their checks more
strict.

3. Check Completion Phase:

The Check Completion Phase uses whole-program analysis to modify the
run-time checks in a program with completeness information. Complete-
ness means that everything that can be known about a memory object
is known to the compiler, and therefore the run-time check can be more
strict about what it considers to be correct behavior.

4. Debug Instrumentation Phase:

Finally, there’s a phase for instrumenting the run-time checks with debug
information if the user wants to use SAFECode more as a debugger than
as a production-use memory safety system.

3 Source Code Layout

The SAFECode analysis and transformation sources are organized as follows:

1. lib/ArrayBoundChecks: This library contains several analysis passes for
static array bounds checking.

2. lib/InsertPoolChecks: This library contains the transform passes for
inserting run-time checks and for inserting code to register memory objects
within individual pools. It also contains the CompleteChecks pass which
implements the Check Completion Phase.

3. lib/OptimizeChecks: This library contains several passes for optimizing
run-time checks.

4. lib/RewriteOOB: This library contains passes for implementing Ruwase/Lam
pointer rewriting. This code allows SAFECode to tolerate out-of-bounds
pointers that are never dereferenced.

5. lib/DebugInstrumentation: This library implements code that modifies
run-time checks to contain additional debug information (if such debug
information is present in the program). It is used in SAFECode’s debug
tool mode.

6. lib/DanglingPointers: This library contains a pass that modifies a pro-
gram to perform dangling pointer detection.



SAFECode Software Architecture 4

SAFECode also contains a few run-time libraries that are linked into programs:

1. runtime/BitmapPoolAllocator: This run-time library implements a pool
memory allocator for SAFECode.

2. runtime/DebugRuntime: This run-time library implements the run-time
checks used by SAFECode. Despite the name, it currently contains im-
plementations of both the production and debug mode run-time checks.

4 Run-time Checks and Instrumentation

4.1 Complete vs. Incomplete Checks

Most of the SAFECode run-time checks come in two flavors: complete and
incomplete. A complete check attempts to find the bounds of a memory object
into which a pointer points; if it cannot find the memory object, then the pointer
must be invalid, and the check fails.

The problem with complete checks is that they only work when the compiler
knows everything that can be known about a memory object. Sadly, this isn’t
always true; applications are linked with native code libraries compiled with
other compilers (unthinkable, I know, but it happens); the SAFECode compiler
cannot analyze native code, and so it does not know about memory objects
allocated or freed by the library code (also known as external code).

Incomplete checks are SAFECode’s way of permitting a mixture of SAFECode-
compiled code and native external code; if a pointer could be manipulated by
external code, SAFECode relaxes its run-time checks so that failure to find the
referent memory object does not cause a run-time check to fail.

By default, SAFECode makes all of its checks incomplete checks (this is because
each compilation unit treats other compilation units as external code). When
used with libLTO, SAFECode can use points-to analysis to determine which
incomplete checks can be converted into complete checks without causing false
positives.

Incomplete checks admit the possibility that memory safety errors will escape
detection. However, they make memory safety usable in practice, and so we use
them.

4.2 Run-time Checks

Below are the run-time checks that SAFECode may add to a program. Note that
many of these functions have alternate versions for pointers that are determined
to be incomplete or unknown by SAFECode’s points-to analysis algorithm.



SAFECode Software Architecture 5

• poolcheck (void * pool, void * ptr, size t length):
The poolcheck call is used to instrument loads and stores to memory
(including LLVM atomic operations). It ensures that the pointer points
within a memory object in the pool and that the load or store will not
read/write past the end of the memory object.

• fastlscheck (void * ptr, void * start, size t objsz, size t len):
The fastlscheck() function is identical to the poolcheck() function in
functionality; the difference is that fastlscheck() is passed the bounds
of the memory object into which the pointer should point. It is an op-
timized version of poolcheck() that does not need to search for object
bounds information in a side data structure.

• poolcheck align (void * pool, void * ptr):
The poolcheck align() function is used when type-safe load/store op-
timizations are enabled. It is possible for a pointer which is type-safe to
be loaded from a memory object which is not type-safe. When a type-
safe pointer is loaded via a type-inconsistent pointer, poolcheck align()

verifies that the loaded pointer points within the specified pool at the cor-
rectly aligned offset for objects of its type. This ensures that no further
checks are needed when the type-safe pointer is used for loads and stores.

• free check (void * pool, void * ptr):
The free check() function checks that the pointer points to the beginning
of a valid heap object. It is used to catch invalid free calls for allocators
not known to tolerate invalid deallocation requests.

• boundscheck (void * pool, void * src, void * dest):
The boundscheck() function takes a source pointer and a destination
pointer that is computed from the source pointer; the checks first deter-
mines whether the source pointer is within a valid memory object within
the specified pool and, if so, that the destination pointer is within the same
memory object. It is primarily used for performing array and structure
indexing checks on LLVM getelementptr instructions.

If the destination pointer goes out of bounds, then boundscheck() re-
turns a rewrite pointer. A rewrite pointer (or OOB pointer) point to an
unmapped portion of the address space. They are used to allow pointers
to go out of bounds so long as they are not dereferenced.

• exactcheck (void * src, void * dest, void * base, int objsize):
The exactcheck() function is a fast version of the boundscheck() func-
tion that does not need to do an object bounds lookup.

• funccheck (void * ptr, void * targets[]):
The funccheck() function determines if a function pointer belongs to the
set of valid function pointer targets for an indirect function call. It is used
to ensure control-flow integrity.



SAFECode Software Architecture 6

SAFECode also instruments code with other functions to support the above
run-time checks:

• getActualValue(): The getActualValue() function takes a value and
determines if it is a rewrite pointer. If it is, it returns the actual out-of-
bounds value that the rewrite pointer represents. Otherwise, it returns
the original value.

The getActualValue() function is primarily used for supporting the com-
parison of pointers that have gone outside their object bounds.

• pool register(): The pool register() family of functions register the
bounds of allocated memory objects in side data-structures; these are used
to map a pointer to the memory object to which it belongs in run-time
checks.

Note that some memory objects may not be registered if SAFECode de-
termines that their bounds are never needed.

• pool reregister(): The pool reregister() function unregisters a mem-
ory object and registers a new object of the specified size. It is designed
to support allocators like realloc().


