
Low-Fat Pointers: Compact Encoding and Efficient
Gate-Level Implementation of Fat Pointers

for Spatial Safety and Capability-based Security

Albert Kwon
kwyoung@seas.upenn.edu

Department of ESE
200 S. 33rd Street

Philadelphia, PA 19104
United States

Udit Dhawan
udit@seas.upenn.edu

Department of ESE
200 S. 33rd Street

Philadelphia, PA 19104
United States

Jonathan M. Smith
jms@cis.upenn.edu

Department of CIS
3330 Walnut Street

Philadelphia, PA 19104
United States

Thomas F. Knight, Jr.
tk@ginkgobioworks.com

Gingko Bioworks
27 Drydock Ave.

Boston, MA 02210
United States

André DeHon
andre@acm.org
Department of ESE
200 S. 33rd Street

Philadelphia, PA 19104
United States

ABSTRACT

Referencing outside the bounds of an array or buffer is a
common source of bugs and security vulnerabilities in to-
day’s software. We can enforce spatial safety and eliminate
these violations by inseparably associating bounds with ev-
ery pointer (fat pointer) and checking these bounds on ev-
ery memory access. By further adding hardware-managed
tags to the pointer, we make them unforgeable. This, in
turn, allows the pointers to be used as capabilities to fa-
cilitate fine-grained access control and fast security domain
crossing. Dedicated checking hardware runs in parallel with
the processor’s normal datapath so that the checks do not
slow down processor operation (0% runtime overhead). To
achieve the safety of fat pointers without increasing program
state, we compactly encode approximate base and bound
pointers along with exact address pointers for a 46b address
space into one 64-bit word with a worst-case memory over-
head of 3%. We develop gate-level implementations of the
logic for updating and validating these compact fat point-
ers and show that the hardware requirements are low and
the critical paths for common operations are smaller than
processor ALU operations. Specifically, we show that the
fat-pointer check and update operations can run in a 4 ns
clock cycle on a Virtex 6 (40nm) implementation while only
using 1100 6-LUTs or about the area of a double-precision,
floating-point adder.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4–8, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516713.

Categories and Subject Descriptors

B.8.0 [Hardware]: Performance and Reliability—General ;
C.1.3 [Computer System Organization]: Processor Ar-
chitectures—Capability Architectures

Keywords

Processor; security; spatial confinement; fat pointer; capa-
bilities; memory safety

1. INTRODUCTION
Computer systems security is a major and increasing con-

cern, not least because of the increasing dependence on such
systems for activities in daily life, such as communication,
shopping and banking. Today’s computers reflect biases in
system design and organization that are often decades out
of date—based on silicon budgets where orders of magni-
tude fewer transistors were available than today, and based
on threat models where very few machines were networked
and the data they held was of limited value. For example,
today’s systems only provide coarse-grained separation be-
tween processes using virtual memory contexts. Switching
between virtual memory contexts is expensive, encouraging
the use of coarse-grained contexts with no internal separa-
tion of privileges within the contexts. A virtual memory
context typically holds a very large number of objects with
no boundary to separate the access of one object from an-
other, either intentionally or accidentally. The lack of fine-
grained controls on object access enables unintended use or
modification of data, such as buffer overflows. Despite long
familiarity with their existence and exploitation [3], buffer
overflow attacks remain a persistent source of security holes.
Leaving the burden of spatial safety enforcement to indi-

vidual programmers no longer appears to be a viable approach
to software security. If even a single programmer leaves a
potential spatial safety violation in a program, that is an
open attack vector for the program.

721

The alternative is to design our systems to automatically
prevent spatial safety errors, protecting against silent cor-
ruption of the system or violations of program semantics.
This can be done at the language level with bounds checked
arrays (e.g. Java), at the compiler or runtime level by main-
taining object base and bounds information, or at the hard-
ware level. Many recent systems explore the use of fat point-
ers that extend the pointer representation with base and
bounds information so that the runtime or hardware can pre-
vent spatial safety violations (Sec. 2.1). Software level solu-
tions typically come with high runtime overheads (50–120%)
or weak protection guarantees limiting ubiquitous adoption.

Object capability systems [14, 17, 45, 34, 28, 40] are at-
tractive for both their potential to enable programmer con-
trol of access rights and their support for least privilege. Us-
ing hardware supported tags [36, 18, 34, 23, 20] (Sec. 3.1),
we can make fat pointers unforgeable so that they can serve
as a basis for the descriptors used in hardware-based capa-
bility systems.
In this paper we assume that the safety benefits of fat

pointers [27, 33, 31] and the security benefits of capabilities
[29, 42] are well established from prior work, but that their
costs have typically been considered too high for ubiquitous
use in the past [19, 10]. To that end, we address how they
might be efficiently implemented in hardware. Specifically,
we explore (1) compact representations for fat pointers that
limit their impact on memory footprint (3% worst case), (2)
parallel hardware support for bounds checking that guar-
antees there is no runtime overhead for checking, and (3)
hardware enforcement and management that allow the fat
pointers to serve as object capabilities. That is, we spend
hardware to eliminate the overheads of spatial safety check-
ing. We evaluate the area and delay complexity of the hard-
ware fat-pointer operations using an FPGA implementation.
Our novel contributions include:
• Design and evaluation of a new, compact fat-pointer

encoding and implementation (BIMA) that has signif-
icantly lower gate depth (small cycle time) operations
than previous work (e.g. [7]) while simultaneously re-
taining: (1) compact representation in memory, (2)
low memory loss due to fragmentation (<3%), and (3)
precise spatial bounds detection.

• Hardware that enforces the BIMA bounds checking
and update, making the fat pointers unforgeable and
non-bypassable. This allows the 64b pointer to serve as
an object capability, achieving significant savings over
schemes that required three full 64b words to encode
a capability address, base, and bound (e.g. [43]).

• Pipeline organization that allows the BIMA encoding
to run just as fast as the baseline processor without
spatial safety checking.

2. BACKGROUND

2.1 Fat Pointer
Many modern systems have explored the maintenance and

checking of explicit object base and bounds in order to main-
tain spatial safety. That is, rather than simply representing
a pointer with its address, the system includes the base and
bound address in the pointer representation, for a total of
three words. Since this makes the pointer larger, it is of-
ten referred to as a fat-pointer scheme (e.g. [27], [33]). By
checking against the base and bound during memory oper-

ations, the system can detect any spatial safety violations
and prevent them from occurring:

if ((ptr.A >= ptr.base) && (ptr.A <= ptr.bound))

perform load or store

else

jump to error handler

The Secure Virtual Architecture (SVA) [11] lists fat point-
ers as a potential future direction for further performance
improvement of OS kernel safety enforcement. Many schemes
have introduced the pointers in the compiler when running
on conventional hardware. These incur significant runtime
and space overheads. Examples include: PAriCheck (9.5%
average memory overhead and 49% runtime overhead on
SPEC2000) [50], Baggy Bounds (worst-case 100% memory
overhead; 15% average memory overhead and 60% runtime
overhead on SPEC2000) [2], SoftBound (worst-case 200%
memory overhead; 64% average memory overhead and 67%
runtime overhead on SPEC and Olden benchmarks) [31],
and CRED (26–130% runtime overhead) [39]. Other soft-
ware schemes sacrifice guaranteed protection against all out-
of-bound references in order to improve performance, such
as Lightweight Bounds Checks (8.5% average memory over-
head and 23% runtime overhead on SPEC2000) [21]. Fur-
thermore, since these schemes depend on software mainte-
nance and checking of guards, they are not suitable for use
as capabilities since they only assist with voluntary confine-
ment rather than providing mandatory access confinement.

HardBound is a hardware approach that attempts to main-
tain data structure layout compatibility by placing the bound
information in a shadow space and reduces runtime over-
head to 10–20% [15] but has a worst-case memory overhead
of 200%. Moreover, the hardbound design is described only
down to the micro-architectural level, providing no quan-
tification of added gate count or necessary gate delay. In-
tel has recently announced a hardware-assisted approach for
runtime memory bounds management [1] that appears very
similar to HardBound.

Apart from the explicit fat-pointer approach for memory
safety, some tagging mechanisms have been proposed that
use metadata to perform spatial checks [12, 9]. The most
lightweight version of these, uses a few extra bits per word
to limit accidental spatial violations but not guarantee pro-
tection, while the more complete require over 100% area
overhead and can have over 100% runtime overhead.

In contrast, our scheme has a worst-case 3% memory loss
due to fragmentation (Sec. 4.5) and no runtime overhead
(Sec. 5) while providing spatial safety semantics similar to
HardBound and hardware enforcement that makes it suit-
able for supporting capabilities. Furthermore, we provide a
gate-level design that allows us to quantify gate count and
gate delays.
While most of the prior work was performed on x86 archi-

tectures, we will be using a RISC architecture as our base-
line. As a crude estimate of the work performed by the fat-
pointer checking with dedicated hardware, we identify the
instruction sequences required to provide the same protec-
tion as our fat-pointer scheme in Tab. 1 and use instruction
trace simulations for the SPEC2006 benchmarks (App. A) to
calculate the impact on dynamic instruction count (Fig. 1).
This is an overestimate in that a good compiler will opti-
mize away some of these checks as redundant (e.g. [32]).
Nonetheless, this illustrates the work performed by our fat-

722

G
e

m
s
F

D
T

D
a

s
ta

r
b

w
a
ve

s
b

z
ip

2
c
a

c
tu

s
A

D
M

c
a

lc
u

lix
d

e
a

lI
I

g
a

m
e

s
s

g
c
c

g
o

b
m

k
g

ro
m

a
c
s

h
2

6
4

re
f

h
m

m
e

r
lb

m
le

s
lie

3
d

lib
q

u
a

n
tu

m
m

c
f

m
ilc

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

p
o
v
ra

y
s
je

n
g

s
o

p
le

x
s
p

e
c
ra

n
d

s
p

h
in

x
3

to
n

to
w

rf
z
e

u
s
m

p
g

e
o
.m

e
a

n

D
y
n

a
m

ic
 I

n
s
tr

u
c
ti
o

n
 C

o
u

n
t

0
1

2
3

4

Figure 1: Dynamic instruction count for an ALPHA archi-
tecture performing spatial checks in software

pointer hardware and further motivates its need. In Fig. 1
we observe that there is an average of 220% overhead in the
number of dynamic instructions executed for non-fat pointer
hardware ISAs.

2.2 Object Capabilities
Typical isolation models for users of a shared computing

resource include sharing disciplines for time (such as real-
time or best-effort scheduling) and memory (such as read-
write-execute access controls on objects in processor memory
or secondary storage). Models for protection have included
storage keys [25] associated with fixed size blocks of memory
(e.g., 2048 bytes on the System/360), programmer-defined
contiguous regions of memory such as segments (e.g., Bur-
roughs descriptors [36]), and fixed-sized pages of memory
comprising a protected virtual address space. Today, most
virtual memory systems are implemented using several large
“segments”, e.g., for a heap, stack and instructions, with
an eye to both protection (e.g., non-executable data seg-
ments) and sharing (e.g., shared read-only segments). These
segments are demand-paged, combining segmentation and
paging in the style of Multics [35], primarily to exploit lo-
cality of reference [13]. Large segments and pages provide
a coarse-grained form of hardware access control, but this
coarse granularity (e.g., for code, data and stack in UNIX)
comes with security and performance consequences. First,
there is no protection of individual objects contained within
the segment, and second, the sizes of segments and pages
are unrelated to the sizes of individual objects. Further-
more, switching security contexts is an expensive operation
that discourages programmers from providing fine-grained
separation.

Capability-based computer architectures provide hardware
support for fine-grained access control. One example, the
Cambridge CAP Computer [44], provided a set of “base-
limit” registers that point to and delimit a segment of mem-
ory. These were augmented with bits indicating permitted
accesses, e.g., read, write and/or execute. A second ex-
ample, HYDRA/C.mmp [46] implemented capabilities as a
combination pointer and access rights, with access rights
defined by a richer type system than that of the CAP Com-
puter. A third and final example, the Intel 432 [37] pro-
vided a complex “Object Descriptor” with access rights and
a structure incorporating a base address for the object and
the lengths of both data and access parts. A data operand
is a two-part value with an object selector (which can be
interpreted as a base address) and a displacement. The dis-

placement serves the role of a bound, giving a complex im-
plementation of a base and bound. The basic protection
mechanism for all three of these systems consists of a set
of rights, and a base and bound pointer that is exercisable
with appropriate rights. A major performance cost associ-
ated with these approaches is the multiple levels of indirec-
tion and table lookups for memory references; Colwell [10]
provides considerable analysis of these overheads.

Other hardware systems have implemented similar con-
structs, e.g., the 64-bit guarded pointers [8] of Carter, et
al., avoid translation tables by encoding permission bits and
segment sizes in the pointer itself. This allows lightweight
(cycle-by-cycle) context switches, allowing instructions from
different threads with different security domains to be mixed
in a processor pipeline and encouraging more fine-grained
separation of privilege domains. Cambridge’s CHERI [43] is
a recent hardware capability architecture that has the goals
of supporting a hybrid capability model as explored in Cap-
sicum [42]. CHERI uses a 256b fat pointer as a capability
including a full 64b address, 64b base, and 64b length. Our
design improves on this greatly, and shows how the address,
base, and bounds can be composed into a single 64b word
for a 46b address space.

3. SIMPLIFIED SAFE PROCESSOR
We originally developed this fat-pointer scheme for the

SAFE Processor [16]. Since the SAFE Processor includes
a number of orthogonal safety innovations, we extract a re-
duced version of the SAFE processor, the Simplified SAFE
Processor (SAFElite), to provide concrete context for the
fat-pointer logic. Nonetheless, the fat-pointer implementa-
tion we describe, should be a useful component in a wide
range of processor architectures.
The SAFElite is a simple 64b RISC processor with a four-

stage pipeline as shown in Fig. 2. The SAFElite is a clean-
slate ISA design that is not concerned with legacy binary
compatibility. We use the SAFElite as a single-address space
machine, with all applications and system services running
in the same address space, exploiting the fat pointer object
capabilities for privilege separation. Memory is structured
into segments, a contiguous set of words addressable by a
fat pointer. Memory in the SAFElite is garbage collected,
thereby avoiding temporal safety hazards.

3.1 Hardware Types
The SAFE processor uses capabilities to constrain ma-

licious activities at the hardware level. To support this,
on top of a base RISC processor, we incorporate hardware
mechanisms that allow us to enforce critical semantics to
ensure a secured computation. First, we add a notion of
native hardware types in the form of tags (e.g. [36, 44, 20])
to the words in the processor, such as Integer for integer
words, Instruction for instructions, and Pointers for words
that reference memory segments. These hardware types are
added on top of the actual data payload. For the current
discussion, let us assume that we have 8 bits allocated for
the hardware types in SAFElite (making our memory and
data path 72 bits wide). The hardware types could be larger
or smaller depending on number of types desired, but even
at 8 bits (256 types), SAFElite only incurs a total overhead
of at most 16% (72

64
× 1.03; 3% worst-case memory fragmen-

tation is explained in Sec. 4.5). Alternate implementations
might prefer to avoid adding hardware type tag bits on top

723

Figure 2: Simplified SAFE Processor Pipeline

of the 64b word. Some designs store metadata in a shadow
space (e.g. [15]). Another alternative is to borrow bits from
the base 64b word for hardware type.

Types limit how data can be used. Using these hard-
ware types, the SAFElite avoids several attacks such as ma-
licious code injection attacks that try to use input data that
would be typed as an Integer as processor instructions. On
SAFElite only a word with Instruction hardware type will
be executed as an instruction. To support this, we add a
Hardware Type Unit (HTU) to the SAFElite (see Fig. 2) to
validate its entire operation with respect to the instruction
and input operands (such as only an Integer can be added
to an Integer). The Hardware Type Unit also assigns the
hardware type to the result of a computation, if any.
Although 8b of hardware type allows up to 256 unique

hardware types, for this paper we concentrate on the follow-
ing hardware types:

• Pointer: hardware type on any word that is a well-
formed and valid pointer to a segment of memory;
pointers can be further subdivided by access, including
Read-Only and Execute-Only Pointers.

• Integer: hardware type on a word that is used as a
64b bit vector

• Out-of-Bounds-Pointer: hardware type on a word
that was previously a pointer, but has now preceded
its base or exceeded its bound.

• Out-of-Bounds-Memory-Location: hardware type
on the memory locations that seem to be referenced by
a valid pointer but are not within bounds, as these lie
beyond the precise bound of the segment (see Sec. 4.4)

• Error: SAFE and SAFElite allow us to invalidate
an operation if it violates the intended semantics (e.g.
[24]); in that case, we assign this hardware type on the
operation’s result. In general we may have more errors
than the two Out-of-Bounds cases identified above, but
we will not differentiate them further in this paper.

• Other: the set of hardware types on words that are
not a pointer, integer, or error. We will not differenti-
ate these further in this paper.

The hardware types allow the garbage collector to distin-
guish pointers from non-pointers, thereby facilitating garbage
collection (GC). One hardware type is used to represent GC
forwarding pointers.

In a conventional processor all the pointer arithmetic is
achieved using regular arithmetic instructions. For example,

the addqi instructions used in the ALPHA architecture for
adding integers are also used to perform pointer arithmetic
This poses a serious vulnerability that can be exploited to
potentially create a memory reference to any location (e.g.,
[38]). However, this is not possible in the SAFElite since the
Hardware Type Unit does not allow typed pointer data to be
offset by an integer using a regular addm (integer add modulo
264) instruction. Furthermore, the result of an addm instruc-
tion is an Integer that cannot be used as a Pointer for deref-
erencing memory. In order to perform pointer arithmetic in
the SAFElite, we add a specialized instruction addp (add
to pointer) for incrementing or decrementing a word with a
pointer hardware type. Consequently, we add a new func-
tional unit called the Pointer Unit (PU) as shown in Fig. 2
that is responsible for all the pointer-related arithmetic op-
erations. Instructions used to access memory, namely lw

(load word from memory) and sw (store word to memory),
follow the same semantics as in a common processor, but
instead require a pointer type argument (see Sec. 4.8).

3.2 Privileged Memory Management System
Control over creation and allocation is necessary to guar-

antee unforgeability of the pointers if they are to be used
as capabilities [46]. We assume that the Memory Manager
(MM) is a separate, privileged software subsystem that can
create fat pointers. Only the MM has the privileges to cre-
ate a new fat pointer. Ordinary code can call into the MM’s
allocation routine to obtain a new pointer. The full SAFE
Processor supports calls into privileged domains (gates) that
are as inexpensive as ordinary procedure calls [16].

3.3 Stack Protection
To get full advantage of the fat pointer protection, it

would be valuable to use separate segments for each stack
frame. For non-garbage-collected systems or hybrid sys-
tems where the compiler can stack-manage call frames, this
can be supported with a special pushframe instruction1 at
the SAFElite-level to create subframes from a typed stack
pointer and a special popframe instruction to return them.
In hybrid cases, the garbage collector will need to distin-
guish these stack subframes and treat them differently. In

1This is similar to the alloca primitive in conventional sys-
tems that is used allocate memory space on the stack rather
than the heap.

724

the full SAFE Processor, the call stack is not directly visible
to user code and is used only for procedure control.

3.4 Compatibility
While our primary design is not concerned with legacy

compatibility, our hardware could be added for capability
support alongside legacy code as illustrated in the CHERI
hybrid capability processor [43]. CHERI uses capabilities
for fine-grained separation within a virtual-memory context.
Capability-oblivious legacy code can call capability-aware
subroutines, and capability-aware code can use capabilities
to sandbox capability-oblivious software components. Types
can effectively capture the operations allowed on a capabil-
ity, so our hardware-typed pointer can provide the same
functionality as the full 256b CHERI capability.

3.5 FPGA Implementation
To validate the operation and characterize the perfor-

mance of the SAFElite, we prototyped the processor on an
ML605 FPGA development board [47] from Xilinx with a
Virtex 6 (xc6vlx240t-2 device) [48]. A 64-bit addition on this
device takes close to 2 ns. However, with operations such as
variable shifts, the Integer ALU can operate only at a latency
of 4 ns. A moderate sized direct-mapped cache built using
Block RAMs (discrete SRAM blocks on this FPGA device)
can also be accessed with a delay under 2.5 ns. Therefore, it
is necessary that all functional units, including the Pointer
Unit, finish their operation within a 4 ns envelope in order
to avoid increasing the processor cycle time.

4. COMPACT FAT POINTER ENCODING
In this section, we derive our compact fat-pointer encod-

ing (Secs. 4.1–4.2), address issues with approximate sizing
and out-of-bounds pointers (Secs. 4.3–4.4 and 4.7), and char-
acterize the worst-case fragmentation effects (Sec. 4.5). We
roundup the operations on the fat pointers (Sec. 4.8). Fi-
nally, we show the datapaths to support the fat-pointer op-
erations and quantify their area and delay (Secs. 4.9–4.10).

4.1 Aligned Encoding
Keeping track of base and bound potentially requires three

pointers. To get a more compact fat-pointer representation,
let us first assume that the size of the segment the pointer
is referencing is a power of two (i.e., 2B for some B). Fur-
thermore, assume that the pointer is aligned on the same
power of two boundary. Then the base of the pointer can
be determined by replacing B bits in the LSB with 0’s:

base = A− (A& ((1 << B)− 1)) (1)

Similarly, the bound can be represented by replacing the
B LSBs with 1’s. With the above assumptions, we can rep-
resent the pointer and its base and bound with an overhead
of only |B| bits, which is, at most, the log of the size of the
address space. This is the scheme used for guarded pointers
by Carter [8] and for the Baggy Bounds software scheme [2].

4.2 Floating-Point Size
This simple encoding could, however, result in large mem-

ory overhead through fragmentation: objects of size slightly
larger than a power of two will waste nearly half of the allo-
cated space. For example, for an object of size 33, we must
allocate 64 words. To address this issue, instead of having

Address: 7B:1 I:1 M:7

Base BoundAddress

(M-I) blocks

2B Words

0 1 2 3 4 85 6 7 1211109 13 14 15

045515763

Figure 3: A typical pointer in the BIMA encoding scheme

the pointer as one large block, we can view it as a collection
of several smaller blocks. If we used five bits for the number
of blocks, we can allocate 17 blocks of size two for an object
of size 33, forcing us to only allocate a segment one word
larger than the desired allocation.

The basic floating-point size approach was introduced by
Aries [7] and is analogous to floating-point numbers. In both
cases, we represent a range of values much larger than the
number of bits used for encoding by separating precision
(mantissa) from the exponent (B in our case). This results
in an exact address representation, an exact base represen-
tation that has alignment restrictions, and an approximate
bound representation that may force us to conservatively
overestimate (round up) the segment size.

Given the alignment restrictions, we can reconstruct the
base and bound pointers with just a few additional bits be-
yond the current pointer address. Furthermore, the recon-
struction can be performed with simple logic that places
these additional bits into the appropriate bit positions (de-
posits) on copies of the address. To encode both base and
bounds, we use a minimum field, I, for the base, and maxi-
mum field, M, for the bound that specify the |I| = |M | bits
above the bottom B bits of the base and bound address.
When we create a pointer, we deposit |I| bits above the bot-
tom B bits of the base to I, and do the same with the bound
to M. We can almost recover the base and bound by simply
shifting I and M by B and replacing the bottom |I|+|B| bits
in the address. We call this encoding scheme BIMA since
its key fields are the block size exponent, B, the minimum
bound, I, the maximum bound, M, and the address, A. Fig. 3
shows a typical pointer in the BIMA encoding scheme.

carry = 1 << (B+ |I|)

Atop =
(

A&(carry− 1)
)

(2)

Mshift = M << B

Ishift = I << B

Dunder = (A >> B)[5 : 0] < I ?

(carry | Atop)− Ishift :

Atop− Ishift (3)

Dover = (A >> B)[5 : 0] > M ?

(carry | Mshift)− Atop :

Mshift− Atop (4)

It is not as simple as a deposit because the bits above

the I or M bits in the word may need to be incremented.
Nonetheless, this is easy to detect and accommodate. There
are two possible cases for this scheme: the pointer has not
incurred any carries in the A field beyond |I|+ B bits or it
has. When there have been no carries beyond the bottom
|I|+B bits, the relevant bits that determined I and M have

725

not changed. Therefore, the |I| bits above the B bits will
be greater than or equal to I and less than or equal to M .
In this case we can compute the distance to underflow and
overflow, Dunder and Dover, by doing a |I|+B subtraction
using the bottom bits of A and the base and bound com-
puted from simple shifts. When there is a carry, however, I
could be larger than the corresponding bits in A and vice-
versa for M . We can resolve this issue by adding one bit to
the MSB of the smaller quantity (i.e., add 2|I|+B). Eqs. 3
and 4 show the computation required.

To fit the encoding into one 64-bit word, we must use
some of the bits to encode B, I, and M . For example, if we
allocate 6 bits to each, that leaves us with 46b to specify the
address. Since we use word addressing of 64b words, this
is comparable (249=512TB) to the 40b byte addresses [26]
(1TB) or 48b byte addresses (256TB) [4] currently supported
by x86-64 architectures.

4.3 Out-of-Bounds
One consequence of the compact representation is that we

cannot represent a pointer that points to an address that is
not bounded by the base and bounds. Consequently, when-
ever a pointer is computed that violates its bounds, we rep-
resent it with a different hardware type, the Out-of-Bounds-
Pointer. Producing an out-of-bounds pointer, itself, is not
an error. It is common to increment a pointer until it ex-
ceeds the bound. The error only occurs when we attempt
to use the Out-of-Bounds-Pointer as the address in a load
or store operation. As a result, there is no bounds check
at the time of the load, only a Hardware Type Unit check
that the type of the word used as an address is still a valid,
in-bounds pointer. This means that addp effectively both
computes the new pointer and checks bounds. Note here
that once a pointer goes out of bounds, it is permanently
marked as an error. Any further updates on the pointer will
not change the type back to Pointer.

4.4 Option to Enforce Exact Bounds
The floating-point size representation results in an approx-

imate bound, meaning that there can be size mismatches
between the pointer and the object. The segment thus will
have some words that extend beyond the end of the ob-
ject that will be unused and accessing these words will not
be considered a violation on the basis of the compact fat-
pointer bounds alone. Nonetheless, these extra words are
not part of any other segment, so writes through pointers
will never write into a different segment.
In systems, such as SAFElite, where type rules and for-

warding pointers demand that we read every word before
writing it, we can enforce exact bounds for all pointers by
filling the extra words with type Out-of-Bounds-Memory-
Location. When the processor performs a memory opera-
tion with a pointer within the fat-pointer bounds but reads
an Out-of-Bounds-Memory-Location type, the hardware will
flag the same error as an out-of-bounds pointer. In both of
the cases of spatial violation, the processor will trap to a
software handler that will resolve the error. This abstraction
allows user-level applications to treat both kinds of out-of-
bounds references in the same way.

4.5 Fragmentation
The BIMA encoding provides a better fit between the ob-

ject and the segment than the exponential alignment and

0 1 2 3 4 85 6 7 1211109 13 14 15

Pointer 1 Pointer 2

Unused

Figure 4: Example of external fragmentation

sizing (Sec. 4.1), but the approximate nature of the floating-
point size representation also forces us to over-allocate mem-
ory to objects as noted above. Any object of size larger than
2|I| may result in allocation of a segment larger than the ob-
ject. Segments of odd size larger than 2|I|, for instance, will
be collections of blocks of even size, and thus there would
be at least one word that is wasted.
To compute the impact of the internal fragmentation, we

note that maximizing (M − I) and minimizing B will result
in smaller internal fragmentation. The pointer will never
be more than one 2B block larger than the object. Thus,
if we ensurethat the allocator will always use the largest
(M − I) and smallest B possible, the memory loss from

internal fragmentation is less than 1/2|I|.
The encoding also specifies that blocks of size 2B must be

aligned, and the alignment could cause external fragmenta-
tion. In particular, with the simple allocation scheme that
assigns blocks of memory in the order of the requests, we
could have a large object following a small object. In this
case, the smaller object could be using some words in the
segment that would have been in the first block of the larger
object. This forces the larger object to be aligned on the
next boundary of 2B , thus wasting nearly a whole block.
For example, in Fig. 4, Pointer 1 is of size 5, and has B = 0.
For the sake of illustration, assume |I| = 2. Pointer 2 is
of size 8, and B = 2. Because Pointer 1 uses address 4,
Pointer 2 must be aligned on the next 22 boundary, result-
ing in addresses 5, 6, and 7 being unused. Nevertheless,
this can only waste at most one 2B block. External frag-
mentation can therefore result in memory loss of at most
1/2|I| of the allocated memory. Internal and external frag-

mentation together waste less than 1/2|I|−1 of memory. If
we choose |I| = 6, the maximum fraction of memory lost to
fragmentation is 3%. The external fragmentation could be
reduced with a more sophisticated allocator that kept track
of fragments and avoided placing small blocks on larger block
alignment boundaries whenever possible. Nonetheless, the
observation above shows that this is not absolutely neces-
sary: such sophisticated alignment would at most eliminate
worst-case external fragmentation and thereby only cut to-
tal fragmentation in half. Furthermore, note that the length
of objects whose size is less than 2|I| are always represented
exactly; therefore, for small objects there is no loss due to
fragmentation.

4.6 Decoded Bounds
The BIMA encoding demands that we decode the bounds

in order to perform checks. We can avoid the delay as-
sociated with decoding bounds by storing decoded bounds
(Dunder, Dover) along with the pointer in the register file.
Whenever the processor loads a pointer, the processor also
computes the underflow and overflow distances in prepara-
tion for any necessary pointer computation. This does re-
sult in a larger register file from storing the distance values.
However, as we will see in Sec. 4.9, it increases performance
significantly with low overhead in area. Furthermore, since

726

the decoded pointers are only stored in the register file, there
is no overhead in the memory.

4.7 C Compatibility
For C compatibility, it is necessary to represent Out-of-

Bounds pointers that are one element past the end of the
array. In cases where the pointer size is larger than the allo-
cated object, as discussed in Sec. 4.4, our scheme already ac-
commodates the C-style Out-of-Bounds pointers. As long as
no reference is made to the Out-of-Bounds-Memory-Location,
no error is flagged. If the pointer is subsequently modified so
that it comes back in bounds, it can be used. For cases where
the pointer size is exact, our scheme as described would not
allow the pointer to be advanced to one past the end of the
array and then recovered as a pointer. The simplest way to
support this feature would be to allocate a pointer that is at
least one word longer and fill the memory location past the
real end of the object with Out-of-Bounds-Memory-Location
as described in the previous section. Note that this, retains
the same worst-case 3% fragmentation overhead we establish
in Sec. 4.5 beyond the object-size+1 allocation made.

A slight modification to the scheme would avoid paying
for any extra memory locations. With our Dunder, Dover

scheme (Sec. 4.6) we could allow Dover to become negative
and then check the sign of Dover on a memory operation.
As long as the pointer is returned to in-bounds before a
memory reference is made, no error is flagged. To handle
the case of a one-element-over Out-of-Bounds being written
to memory, we could add a distinguished C-Out-of-Bounds-
by-One pointer type and convert to this pointer type at the
point of writeback to memory. This feature is not included
in the detailed evaluation that follows; we believe it would
add area but not impact cycle time.
With suitable compiler and linker support, Nagarakatte

reports that bounds can be applied to most legacy C pro-
grams without source code changes [30].

4.8 Operation
We now roundup the pointer-related operations that must

be performed with the BIMA encoding.

4.8.1 newp

The MM subsystem uses a privileged instruction newp to
create new fat pointers. Typically, these would be allocated
out of an available block of memory (e.g. NewSpace or Copy-
Space in a Garbage Collection scheme). newp can be used
to decompose a large, unallocated segment into a collection
of allocated segments.

4.8.2 offsetp

The offsetp instruction returns the offset of the pointer
from its base. This is simply the Dunder value in the register
file, so requires no computation. Iterators can use the offset
to identify the end of an array when the approximate bound
(Sec. 4.2) makes the segment larger than the live data.

4.8.3 addp

Pointer arithmetic in SAFElite is done via an instruction
called addp. The addp instruction is a three-operand (two
sources, one destination) instruction where one source is the
pointer we are changing, and the other is the offset. In
BIMA, when we read the pointer to add the offset, we read
the Dunder and Dover associated with the pointer as well.

We then add the offset to Dunder to indicate that distance to
underflow has changed by the offset. Similarly, we subtract
the offset from Dover. The pointer is within bounds as long
as both distances are non-negative since neither underflow
or overflow has happened. If either distance is negative,
we replace the hardware type of the pointer with Out-of-
Bounds-Pointer.

4.8.4 sw

SAFElite has a two-operand store instruction, sw. Like
many RISC architectures, there is a direct path from the
register file to the memory. In the SAFElite, however, we
check the type of the pointer in parallel with the memory
access (see Fig. 2). As described before, if the address field is
out of bounds, then the type of the pointer will be changed
to an Out-of-Bounds-Pointer. Therefore if the word we are
using as an address to store is an Out-of-Bounds-Pointer,
we flag an out-of-bounds error. Otherwise, the operation is
carried out as with any other processors.
When we are storing a pointer to memory, note the pro-

cessor can just store the 64b BIMA pointer and ignore the
decoded bounds Dunder and Dover. They are redundant in-
formation and can be recomputed when loading the pointer
back from the memory using the lw operation.

4.8.5 lw

SAFElite also has a load operation lw that is a one-source,
one-destination instruction. On a lw, there are potentially
two pointers that we need to check: the pointer we are us-
ing as the source, and the loaded value from memory that
could be a pointer. The fat-pointer computation for the first
pointer behaves the same as the store case: we check if the
pointer is out of bounds, indicated by the Out-of-Bounds-
Pointer type on the pointer.
The fat-pointer decode computation is unique to lw. The

loaded value could be a pointer as well, and for future bounds
checks from the loaded pointer, we need to determine its
Dunder and Dover. Therefore, we must decode the pointer
before it is stored in the register file (See Fig. 6a).

4.8.6 Conventional Processor Equivalent

For the sake of comparison, Tab. 1 shows roughly the in-
structions required to simulate these operations on a RISC
processor with no hardware support for fat pointers. Tab. 1
omits offsetp since it is not needed when using full 64b
pointers to represent base and bound and newp since it is
dominated by other instructions for allocation. Compiler
analysis and support will often be able to remove some of
the bounds checks and data movement (e.g. [32]).

4.9 Implementation
To evaluate the performance of the encoding scheme, we

implemented a Pointer Unit (PU) for decoding and updating
for both the BIMA and Aries fat pointers. The PU was de-
signed2 using Bluespec SystemVerilog [6] and implemented
on a 40nm Xilinx Virtex 6 FPGA (xcv6vlx240t-2) [48].

4.9.1 Aries

While the BIMA scheme shares the basic strategy with
Aries, our encoding is different in specific details that reduce
the latency of the key operations. Instead of using a lower

2source code available at http://ic.ese.upenn.edu/
distributions/fatptr_ccs2013

727

-

<<

1

-

1

&

- <<

-

<<

+

1

+
Bound Base

&

+

>>

< >

Error

-

-

AB L FPtr O�setInt

A'B L F'Ptr'

Ptr

Figure 5: Data path for the Aries Encoding (addp)

(I) and upper (M) bound, Aries uses a length (L) and finger
(F) field that effectively capture the same information. In
both the BIMA and Aries cases the A field always points
exactly to the current word. Since Aries does not have an
I and M field, the Aries finger field records the offset of
the current block form the base block in the record to allow
bounds circuitry to calculate the base and bound. However,
this has two problems: (1) it demands a more complicated
decoding than BIMA, and (2) it demands that the finger
field potentially be updated on every pointer increment. For
reference, the data path for the Aries Pointer Unit is shown
in Fig. 5.

4.9.2 BIMA Decode

The decode data path for the BIMA scheme is shown in
Fig. 6a. Compared to the Aries encoding data path, the
depth is smaller, and there are fewer variable shifts, result-
ing in significantly shorter delay. For |B| = |L| = |I| = 6,
the delay is less than 4.8 ns up to 64b addresses. The de-
lay comparison with Aries is shown in Fig. 9. This is over
a 40% reduction in delay from Aries encoding on average.
The delay and area of the BIMA decode is summarized in
Figs. 7a and 8. Nonetheless, at 4.2 ns, the 46b decode is
slightly longer than our target cycle time of 4 ns. The de-
coded bounds (Sec. 4.6) avoid the need to perform this de-
coding for any operation other than lw. In Sec. 5, we show
that we can split the decode needed for lw across pipeline
stages to prevent this operation from limiting the frequency
of the processor or creating any new stall conditions.

4.9.3 BIMA Update

The update operation in the BIMA scheme is even simpler
than the decode operation. As shown in Fig. 6b, the BIMA
update data path consist only of additions, comparison, and
a multiplexer. The delay of update is independent of size of
I and B and is less than 4 ns for any number of address bits
below 64 as shown in Fig. 7b, meaning the update opera-
tion will not degrade processor clock frequency. At |A|=46,
BIMA update delay is less than half the Aries update delay

(Fig. 9). Aries must check and update the F field on ever
update operation. We note here that because decode and
update are part of different instructions in BIMA, the de-
lay of the two do not add; the delay of decode is relevant
only for lw, while delay of update is only relevant for addp.
Fig. 7b also summarizes the area for the update operation.

4.9.4 Area

The total area required by the BIMA scheme is the sum
of the area of decode and update; for a 64b fat pointer with
|A|=46, the pointer unit uses 1114 LUTs.3 This is larger
than the 956 LUTs required by the Aries encoding. Nonethe-
less, the total area is still comparable to the floating point
adder used in SAFElite, which takes 940 LUTs [49].

4.9.5 Other Implementation Technologies

We include the FPGA delay and area comparison to pro-
vide a concrete point of comparison for the complexity of the
key operations in the fat-pointer encoding schemes. Nonethe-
less, similar effects and benefits would occur in ASIC or cus-
tom implementation technology. Simply looking at Figs. 5,
6a, and 6b, we can see that the depth of operations is lower
for the BIMA operations than the Aries implementation.
This makes it clear the delay would be smaller in any im-
plementation. Note that the slowest operation in each dat-
apath is the variable shift. The Aries datapath requires two
variable shifts while the BIMA decode requires only one and
the BIMA update requires none. Furthermore, note that the
slowest operation in the ALU is the variable shift. This alone
is enough to explain (1) why the BIMA update, which re-
quires no variable shifts, is faster than the ALU, (2) why the
BIMA decode is only slightly slower than the ALU, and (3)
why the Aries decode with two variable shifts is over twice
the delay of the ALU. Consequently, these general timing
relations will hold for custom implementations as well.

4.10 Decoded Bounds Implementation
In the baseline case where we do not add any hardware

type metadata to the words, the register file width is 64b.
Then, we can fit an entire 32-entry register file in two Virtex-
6 BRAMs4 organized as 512×64b, dual-ported memories.
The base SAFElite uses two BRAMs to support one write
and two read ports on 64b words. However, when we add
an 8b hardware type metadata, the register file width is now
72b, and this forces us to use two BRAMs per read port or a
total of 4 BRAMs, even though we are not using the entire
width offered by two BRAMs. On top of this, when we add
the decoded lower and upper bounds, we further increase the
width of our register file by twice the width of our address
size. Therefore, when the address size is 46b, the register file
is (72+2×46 =) 164b wide. The register file now requires 3
BRAMs per read port for a total of 6 BRAMs. If this were
a full custom implementation, we would simply expand the
64b register file width to 164b, or a 156% overhead.

5. PIPELINING AND BYPASSING
The SAFElite has four pipeline stages as shown in Fig. 2.

Without the fat-pointer computation, the processor runs at
4 ns clock cycle with full bypass of results to prevent stalls

3The Virtex 6 FPGA employs 6-input Look-Up Tables for
logic. We refer to them simply as LUTs henceforth.
4BRAM=Block RAM, SRAM blocks in a Virtex-6 FPGA

728

(a) BIMA Decode (lw) (b) BIMA Update (addp)

Figure 6: Data path for BIMA scheme

4.0

4.2

4.4

4.6

4.8

D
e
la

y
 (

n
s
)

32 38 46 54 64

Number of Bits in Address

500

600

700

800

900

A
re

a
 (

L
U

T
s
)

Delay
Area

(a) BIMA Decode (lw)

3.4

3.5

3.6

3.7

3.8

3.9

D
e
la

y
 (

n
s
)

32 38 46 54 64

Number of Bits in Address

300

350

400

450

500

550

A
re

a
 (

L
U

T
s
)

Delay
Area

(b) BIMA Update (addp)

Figure 7: Area and Delay for BIMA scheme, |B| = |I| = 6

4.1

4.2

4.3

4.4

D
e
la

y
 (

n
s
)

4 5 6 7

Number of Bits for I

660

680

700

720

740

760

A
re

a
 (

L
U

T
s
)

Delay
Area

Figure 8: Area and delay for the BIMA decode (lw) for
varying |I| with |B| = 6, |A| = 46

on addp, lw, and sw operations when the memory references
hit in the L1 cache. Adding the 8 ns Aries addp operation to
the pipeline could, however, dramatically degrade the pro-
cessor’s operating frequency.
The BIMA encoding also changes the pipeline due to the

decoding of Dunder and Dover after a load. The BIMA de-
code takes more than 4 ns for addresses using more than 46b,
potentially increasing the cycle time. Also, if we decode the
two distances in the last pipeline stage, then an addp opera-
tion whose argument is the pointer loaded from memory in
an immediately preceding lw instruction (an lw-addp pair)
requires a stall cycle: the Dunder and Dover is needed for

0

2

4

6

8

D
e
la

y
 (

n
s
)

32 38 46 54 64

Number of Bits in Address

BIMA Decode
BIMA Update
Aries

Figure 9: Delay comparison between Aries and BIMA en-
codings with |I| = |L| with varying |A|

the addp, so we need to finish decoding the distances before
addp can execute.
To mitigate this problem, we first split the decode data

path into two stages—Decode 1 and Decode 2 in Fig. 6a.
In our implementation, we can fetch from the data cache in
less than 2.5 ns, so we use the remaining time in the Execute
stage to execute the first part of decode (Decode 1). Then
we finish the computation of Dunder and Dover (Decode 2)
in the Validate/Writeback stage. With this change, we avoid
increasing the clock cycle. To remove the stall for lw-addp,
we split the update (See Fig. 6b) into two stages as well:
we keep the update address circuit (Update Address) in the

729

Figure 10: Last two stages of pipeline for BIMA encoding

Execute/Memory stage, and we move the update distance
circuit (Update Distance) to the Validate/Writeback stage.
Fig. 10 shows the resulting pipeline.

First we note that this change does not affect bypasses
or stalls for any non-pointer computations. The number of
pipeline stages stays the same, and any other unit remains
unchanged. Let us now consider an lw-addp pair in this
pipeline. The addp can happen immediately as the value
(pointer) from memory can be bypassed in one cycle (dot-
ted bypass in Fig. 10). While addp is computing the new
address, Decode 2 in the Validate/Writeback will have fin-
ished decoding the distances. Then the distances needed for
addp will be available before the Validate/Writeback stage,
and thus it will need no stall cycles. Similarly, an addp-addp

pair does not cause any stalls either because we can bypass
the Dunder and Dover in the same fashion (dashed bypass
in Fig. 10).

To avoid any stalls for an addp-lw pair, we use speculative
execution. Since the target address is available by the end
of the Execute stage, we bypass the updated address and
load the value assuming the pointer is in bounds. When
the addp distance update completes and the pointer used
was determined to be out-of-bounds, we kill the load result,
flush the pipeline, and trap to the error handler.

As a result, we maintain the same clock rate and stall con-
ditions as the baseline processor without the Pointer Unit.
That is, the BIMA encoding runs just as fast as the base-
line processor without spatial safety checking (0% runtime
overhead).

6. CONCLUSIONS
We have shown how it is possible to support fully me-

diated, fine-grained spatial safety without sacrificing perfor-
mance. An appropriately low-fat pointer encoding keeps the
memory impact small (64b pointers for a 46b address space)
while simultaneously guaranteeing small and fast hardware
decoding and small (<3%) memory fragmentation overhead.
Even with an additional 8b tag on every word, the total
memory overhead is under 16%. Suitable pipelining guar-
antees the extra work for decoding the low-fat pointer en-
coding does not create new stall cycles for the processor
pipeline. Pointer updates are no more complex than addi-
tions, guaranteeing they do not degrade the processor clock
cycle. Since software presents a large attack surface area
(millions of lines of code in modern applications and kernels)
with demonstrated high rates of vulnerability, there is an ad-

vantage to providing safety guarantees at the hardware level
where the interface is narrower. Furthermore, as computers
protect increasingly valuable assets, spending this modest
number of relatively inexpensive transistors (comparable to
a double-precision, floating-point adder) to increase safety
and security seems a prudent investment.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the DARPA

CRASH program through the United States Air Force Re-
search Laboratory (AFRL) under Contract No. FA8650-10-
C-7090. The views expressed are those of the authors and
do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government. Ben Karel, Cătălin
Hriţcu, and Greg Morrisett provided valuable discussion and
feedback on this paper.

8. REFERENCES

[1] Introduction to Intel Memory Protection extensions.
http://software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions.
Accessed: 2013-08-01.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand.
Baggy bounds checking: an efficient and
backwards-compatible defense against out-of-bounds
errors. In Proceedings of the 18th Conference on
USENIX Security Symposium, pages 51–66, 2009.

[3] Aleph One. Smashing the Stack for Fun and Profit.
Phrack, 7(49), November 1996.

[4] AMD Corporation. AMD64 Architecture
Programmer’s Manual, Volume 2: System
Programming, revision 3.22 edition, September 2012.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug. 2011.

[6] Bluespec, Inc. Bluespec SystemVerilog.

[7] J. Brown, J. Grossman, A. Huang, and T. F. Knight,
Jr. A capability representation with embedded address
and nearly-exact object bounds. Technical Report 5,
MIT AI Lab, April 2000. Aries Project.

[8] N. P. Carter, S. W. Keckler, and W. J. Dally.
Hardware support for fast capability-based addressing.
In Proceedings of the international conference on
Architectural support for programming languages and
operating systems, ASPLOS-VI, pages 319–327, 1994.

[9] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C.
Mowry, R. Teodorescu, A. Ailamaki, L. Fix, G. R.
Ganger, B. Lin, and S. W. Schlosser. Log-based
architectures for general-purpose monitoring of
deployed code. In 1st Workshop on Architectural and
System Support for Improving Software Dependability
(ASID), pages 63–65. ACM, 2006.

[10] R. P. Colwell, E. F. Gehringer, and E. D. Jensen.
Performance effects of architectural complexity in the
Intel 432. ACM Trans. Comput. Syst., 6:296–339,
August 1988.

[11] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure virtual architecture: A safe execution

730

environment for commodity operating systems. In
Proceedings of the Symposium on Operating Systems
Principles, October 2007.

[12] D. Y. Deng and G. E. Suh. High-performance parallel
accelerator for flexible and efficient run-time
monitoring. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
1–12. IEEE Computer Society, 2012.

[13] P. J. Denning and S. C. Schwartz. Properties of the
working-set model. Communications of the ACM,
15(3):191–198, March 1972.

[14] J. B. Dennis and E. C. Van Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, March
1966.

[15] J. Devietti, C. Blundell, M. M. K. Martin, and
S. Zdancewic. HardBound: Architectural support for
spatial safety of the C programming language. In
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 103–114, 2008.

[16] U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C.
Pierce, J. M. Smith, A. DeHon, G. Malecha,
G. Morrisett, T. F. Knight, Jr., A. Sutherland,
T. Hawkins, A. Zyxnfryx, D. Wittenberg, P. Trei,
S. Ray, and G. Sullivan. Hardware support for safety
interlocks and introspection. In SASO Workshop on
Adaptive Host and Network Security, Sept. 2012.

[17] R. S. Fabry. Capability-based Addressing.
Communications of the ACM, 17(7):403–412, July
1974.

[18] E. A. Feustel. On the advantages of tagged
architecture. IEEE Transactions on Computers,
C-22(7):644–656, July 1973.

[19] E. F. Gehringer and J. L. Keedy. Tagged architecture:
How compelling are its advantages? In Proceedings of
the 12th International Symposium on Computer
Architecture, pages 162–170, 1985.

[20] R. Greenblatt, T. Knight, Jr., J. Holloway, D. Moon,
and D. Weinreb. The LISP machine. In Interactive
Programming Environments. McGraw-Hill, 1984.

[21] N. Hasabnis, A. Misra, and R. Sekar. Light-weight
bounds checking. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization, pages 135–144, 2012.

[22] J. L. Henning. SPEC CPU2006 benchmark
descriptions. SIGARCH Comput. Archit. News,
34(4):1–17, September 2006.

[23] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM
System/38 Support for Capability-based Addressing.
In Proceedings of the Eighth Annual Symposium on
Computer Architecture, pages 341–348, 1981.

[24] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your IFCException are belong to us.
In 34th IEEE Symposium on Security and Privacy,
pages 3–17. IEEE Computer Society Press, May 2013.

[25] IBM. IBM System/360 Principles of Operation. 1968.

[26] Intel Corporation. Intel64 and IA-32 Architectures
Software Developer’s Manual, August 2012.

[27] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.

In ATEC ’02: Proceedings of the General Track of the
annual conference on USENIX Annual Technical
Conference, pages 275–288, 2002.

[28] D. Johnson. The Intel 432: A VLSI Architecture for
Fault-Tolerant Computer Systems. Computer,
17:40–48, August 1984.

[29] H. M. Levy. Capability Based Computer Systems.
Digital Press, 1984.

[30] S. Nagarakatte. Practical Low-overhead Enforcement
of Memory Safety for C Programs. PhD thesis,
University of Pennsylvania, 2012.

[31] S. Nagarakatte, J. Zhao, M. M. K. Martin, and
S. Zdancewic. Softbound: Highly compatible and
complete spatial memory safety for C. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 245–258,
2009.

[32] S. Nagarakatte, J. Zhao, M. M. K. Martin, and
S. Zdancewic. CETS: Compiler enforced temporal
safety for C. In Proceedings of the International
Symposium on Memory Management, pages 31–40,
2010.

[33] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: type-safe retrofitting of legacy
software. ACM Trans. Program. Lang. Syst.,
27(3):477–526, May 2005.

[34] R. M. Needham and R. D. H. Walker. The Cambridge
CAP computer and its protection system. In
Proceedings of the Symposium on Operating Systems
Principles, pages 1–10, Nov. 1977.

[35] E. I. Organick. The MULTICS System: An
Examination of Its Structure. MIT Press, 1972.

[36] E. I. Organick. Computer System Organization: The
B5700/B6700 Series. Academic Press, 1973.

[37] E. I. Organick. A Programmer’s View of the Intel 432
System. McGraw-Hill, 1983.

[38] A. T. Phillips and J. S. Tan. Exploring security
vulnerabilities by exploiting buffer overflow using the
MIPS ISA. In Proceedings of the SIGCSE technical
symposium on Computer science education, pages
172–176, New York, NY, USA, 2003. ACM.

[39] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium,
pages 159–169, 2004.

[40] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: a
fast capability system. In Proceedings of the
Symposium on Operating Systems Principles, pages
170–185. ACM, 1999.

[41] R. L. Sites. Alpha AXP Architecture. Digital
Technical Journal, 4(4):1–17, 1992. Special Issue.

[42] R. N. M. Watson, J. Anderson, B. Laurie, and
K. Kennaway. Capsicum: practical capabilities for
UNIX. In Proceedings of the 19th USENIX Security
Symposium, Washington, DC, August 2010.

[43] R. N. M. Watson, P. G. Neumann, J. Woodruff,
J. Anderson, R. Anderson, N. Dave, B. Laurie, S. W.
Moore, S. J. Murdoch, P. Paeps, M. Roe, and
H. Saidi. CHERI: a research platform deconflating
hardware virtualization and protection. In Proc.
RESoLVE, March 2012.

731

[44] M. V. Wilkes and R. M. Needham. The Cambridge
CAP Computer and Its Operating System. North
Holland, 1979.

[45] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: The kernel of a
multiprocessor operating system. Communications of
the ACM, 17(6):337–345, June 1974.

[46] W. A. Wulf, R. Levin, and S. P. Harbison.
HYDRA/C.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

[47] Xilinx, Inc. Virtex-6 FPGA ML605 Evaluation Kit.

[48] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex-6 FPGA Data Sheet: DC and Switching
Characteristics, September 2011. DS512.

[49] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
LogiCORE IP Floating-Point Operator v6.0, January
2012.

[50] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar,
F. Piessens, and W. Joosen. Paricheck: an efficient
pointer arithmetic checker for C programs. In
Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security,
pages 145–156, 2010.

APPENDIX

A. DYNAMIC INSTRUCTION IMPACT
Our main focus is to show the benefit of native hardware

support to enforce spatial memory safety on every instruc-
tion. If we were to enforce the same level of checking using a
conventional processor, we would need to replace a number
of primitive operations with instruction sequences like those
shown in Tab. 1 where in the second column we show the
additional operations needed for spatial checking. In reality
the compiler would add these extra instructions in the bi-
nary. However, we use instruction-trace based simulations
to get a crude estimate of the impact on dynamic instruction
count for such an enforcement without modifying any com-
piler. Our estimates illustrate how much work our invest-
ment in parallel checking hardware and compact encoding
is effectively doing. These estimates are necessarily crude
since the instruction sequences can be subverted below the
level of the compiler, and do not account for optimizations
a compiler could do to eliminate redundant checks. Also,
we assume a single-issue in-order pipeline, whereas, on a
superscalar processor, some of the extra instructions would
fit in otherwise unused issue slots. For example, SoftBound
reports only a 67% runtime overhead on 133% instruction
count overhead [31].

A.1 Methodology
We evaluate the impact of the additional instructions for

performing spatial checks on memory, on the programs from
the SPEC2006 Benchmark Suite [22]. Instruction traces are
produced using the gem5 [5] environment simulating a 64-bit
ALPHA ISA [41]. Since the ALPHA ISA used does not type
pointers differently from integers, we must determine which
values are actually pointers and require additional pointer
operations. To do this, we first perform a pre-pass dataflow
analysis that marks all registers used as addresses in load
and store operations as pointers, then propagate that type
information through the lifetime and use of those registers.

Table 1: Spatial Checking for Processors with no Fat Pointer
Hardware Support

Primitive ALPHA

Operation Operations

pointer arithmetic addq $d.A, $s.A, $t
$d←$s+$t cmpult $q,$d.A,$s.base
(Sec. 4.8.3) cmpult $r,$s.bound,$d.A

or $q,$q,$r
blbs $q, bounds error
lda $d.base,$s.base,0
lda $d.bound,$s.bound,0

store non-pointer cmpult $q,$s.A,$s.base
mem[$s]←$t cmpult $r,$s.bound,$s.A
(Sec. 4.8.4) or $q,$q,$r

blbs $q,bounds error
stq $t,0($s)

store pointer cmpult $q,$s.A,$s.base
mem[$s]←$t lda $r,$s.A,2
(Sec. 4.8.4) cmpult $r,$s.bound,$r

or $q,$q,$r
blbs $q,bounds error
stq $t.A,0($s.A)
stq $t.base,1($s.A)
stq $t.bound,2($s.A)

load non-pointer cmpult $q,$s.A,$s.base
$t←mem[$s] cmpult $r,$s.bound,$s.A
(Sec 4.8.5) or $q,$q,$r

blbs $q,bounds error
ldq $t,0($s)

load pointer cmpult $q,$s.A,$s.base
$t←mem[$s] lda $r,$s.A,2
(Sec. 4.8.5) cmpult $r,$s.bound,$r

or $q,$q,$r
blbs $q,bounds error
ldq $t.A,0($s.A)
ldq $t.base,1($s.A)
ldq $t.bound,2($s.A)

register target cmpult $q,$s.A,$s.base
PC←$s cmpult $r,$s.bound,$s.A

or $q,$q,$r
blbs $q,bounds error
jr $s.A

With all the registers annotated, we can then identify which
operation must be an addp in our fat pointer architecture
and which load and store operations are moving pointers to
and from memory. Once identified, we perform a weighted
sum of operations using the instruction counts from Tab. 1.

A.2 Overhead
Fig. 1 shows the estimated dynamic instructions in a non-

fat pointer hardware ALPHA architecture performing spa-
tial checks in software in comparison to our proposed archi-
tecture (see Sec. 3) with hardware support for fat pointers
for a period of first 1 billion cycles. From the figure, we can
observe that there is a maximum of 300% and on average,
about 220% overhead in the number of dynamic instructions
executed for performing spatial checks in software.

732

